

Ocean-wave-atmosphere-coupling in the AROBASE modelling system for coastal wave warning and sensitivity to flux parameterisation

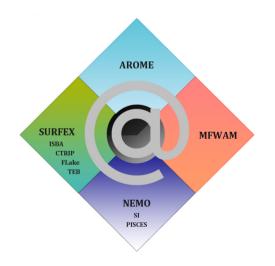
Fleur Nicolay, Cindy Lebeaupin Brossier, Alice Dalphinet, Marie-Noëlle Bouin, Joris Pianezze, François Bouttier, Jonathan Beuvier, Stéphane Law Chune, Guillaume Samson, Hervé Giordani, Youcef Amar

4th International Workshop on Waves, Storm Surges, and Coastal Hazards – 2025/09/22

Deepen understanding of the physics of ocean-wave-atmosphere interactions and improve the realism of simulations

- Represent phenomena in detail (kilometer scale)
- Ensure consistency of data obtained by/provided to models throughout simulations
- Take into account feedbacks in a multi-component system (couplings)
- Focus on complex exchange processes

Objectives



Deepen understanding of the physics of ocean-wave-atmosphere interactions and improve the realism of simulations

- Represent phenomena in detail (kilometer scale)
- Ensure **consistency** of data obtained by/provided to models throughout simulations
- Take into account feedbacks in a multi-component system (couplings)
- Focus on complex exchange processes

Operational application

- Insert wave coupling into a new numerical tool for weather forecasting at Météo-France: the AROBASE km-scale multi-coupled modelling system
- Improve forecasting of meteorological situations, including those involving coastal risks

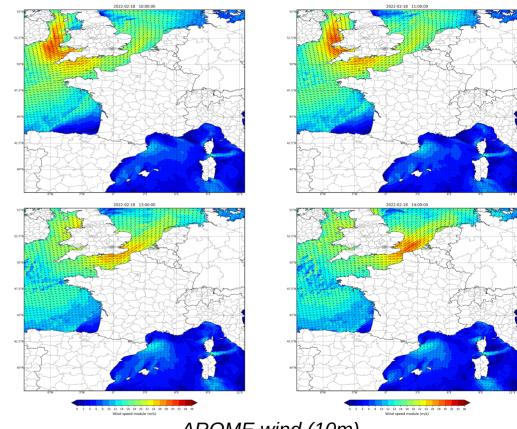
AROBASE (AROme-Based coupled SystEm)

Plan

- 1. Study cases: well anticipated storms
- 2. Coupled modelling system
- 3. Results
- 4. Conclusion

1. Study cases: two well-anticipated storms

Eunice storm (22/02/18)


Strong winter storm

southern Great Britain; northern France, Belgium and Germany; Netherlands...

Météo-France: orange alert for strong winds and waves flooding

Combination of coastal flooding factors in some places:

- strong winds and gusts
 - south of England: 196 km/h
 - ▶ Pas-de-Calais: 176 km/h
- high waves
- temporary surge
- high tide + high tidal coefficient (90)

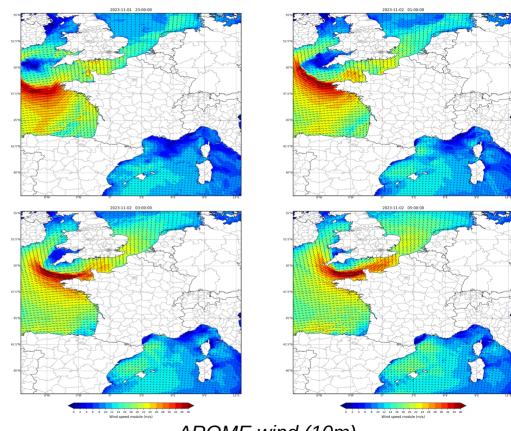
AROME wind (10m) forecast

▶ ▶ Coastal flooding (Pas-de-Calais, Somme, Seine-Maritime)

Ciarán storm (23/11/1-2)

Severe autumn storm

Brittany; Normandy; English Channel; south and south-east of England

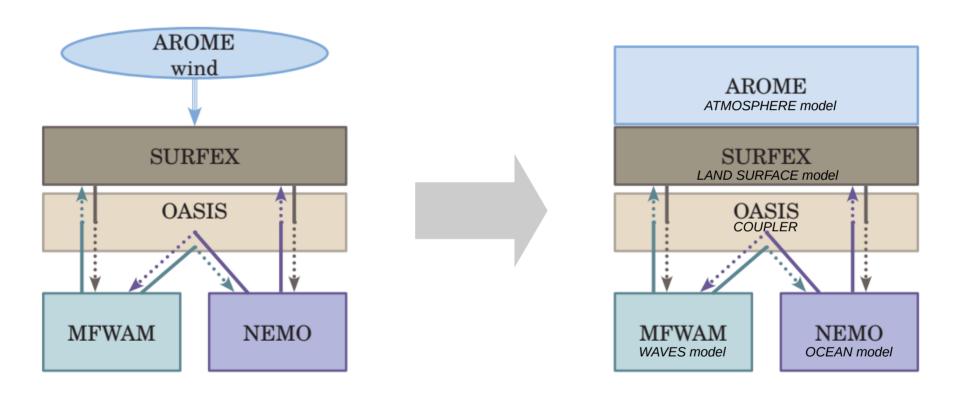

Météo-France: red and orange alerts for strong winds and waves flooding

Record-breaking conditions observed

- Very strong winds and gusts (> 170 km/h in Brittany)
- Very high waves
 - ▶ 12m at the tip of Brittany
 - ▶ 8-10m on the Atlantic coast
 - 4-8m in the English Channel
 - ▶ H_{1/3} 13,6m and H_{max} 21,1m at Pierres-Noires buoy
- High storm surge (80-120 cm)

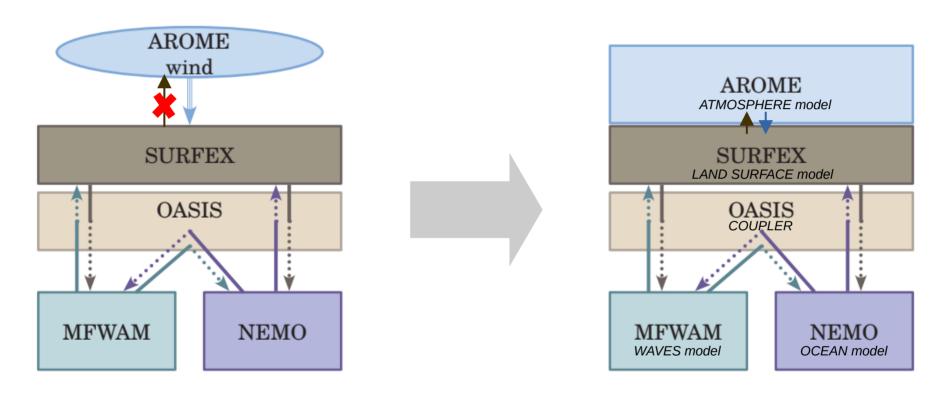
However: medium tidal coefficient (71)

+ storm surge out of phase with high tide


AROME wind (10m) forecast

2. Coupled modelling system

Assembling the coupled system


Study coupled system

AROBASE target coupled system

Assembling the coupled system

Study coupled system

AROBASE target coupled system

Configuration of the experiments

Couplings

experiment	W-FRC	A-FRC	CPL1-AW	CPL1-AO	CPL2-AW-AO	CPL3-AWO
	(forced)	(forced)	(1 coupling)	(1 coupling)	(2 couplings)	(3 couplings)
models		SURFEX	SURFEX	SURFEX	SURFEX	SURFEX
	MFWAM		MFWAM		MFWAM	MFWAM
				NEMO	NEMO	NEMO
couplings	 	 	AW-(WA) 	 AO-(OA) 	AW-(WA) AO-(OA) 	AW-(WA) AO-(OA) WO-OW

Parameterisations

- COARE0
- COARE1
- COARE2
- WASP
- ECUME

6 couplings x 5 parameterisations = 30 configurations 30 configurations x 2 storms = 60 experiments

Turbulent fluxes at the air-sea interface

For the calculation of **turbulent air-sea fluxes** (momentum τ , latent heat LE and sensible heat H), several **parameterisations** are available in SURFEX. The calculation of these fluxes is partly based on transfer coefficients C_x , which depend on the stability of the atmosphere and are themselves functions of neutral transfer coefficients c_{xn} .

ECUME	c_{xn} = neutral wind polynomials from multi-campaigns calibration	without wave coupling			
ECUME-Wave	MFWAM C_D (Giordani et al., sub.)	with wave coupling			
	c_{xn} = function of α_{ch}				

		c_{xn} = function of α_{ch}	
COARE	0	α _{ch} (Smith)	•
(Fairall et al.,	1	α_{ch} = function of T_p (Oost)	
2003)	2	α_{ch} = function of H_s (TY01)	
WASP		α_{ch} = function of T_{p} , (Bouin et al., 2024)	

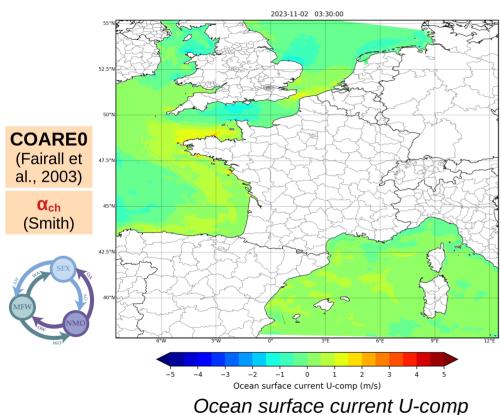
α_{ch}: Charnock coefficient

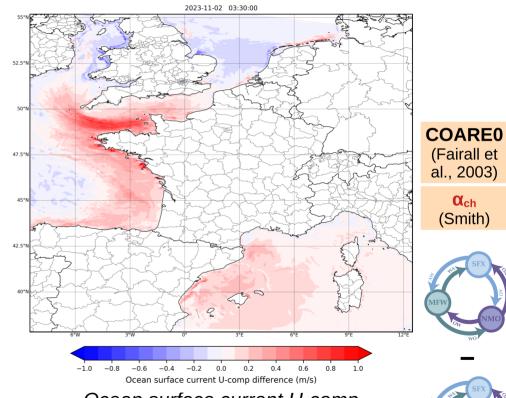
H_s: sea surface height (wind+swell) **T**_p: peak period of sea (wind+swell)

 $T_{p'}$: peak period of wind sea

Depending of the choice of parameterisation, α_{ch} , T_p , H_s or $T_{p'}$ is:

without wave coupling	with wave coupling
function of AROME wind	taken from MFWAM

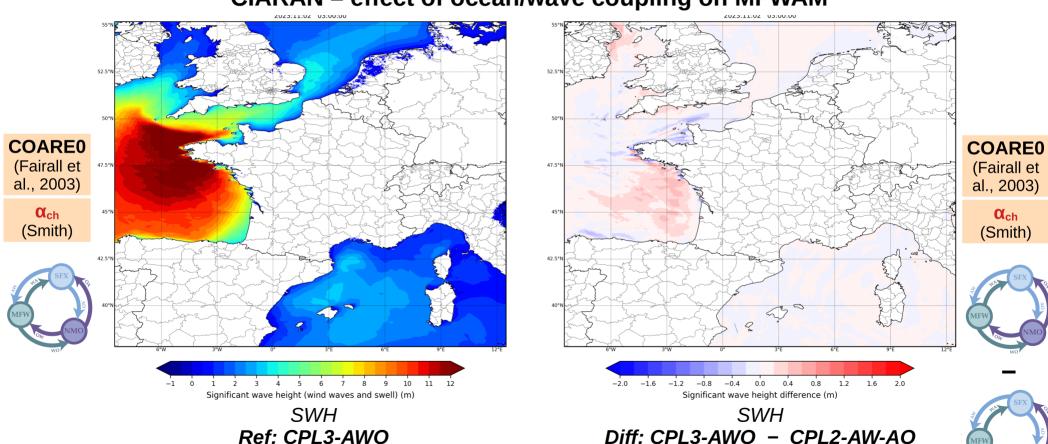

3. Results



 α_{ch}

CIARÁN – effect of ocean/wave coupling on NEMO

Ref: CPL3-AWO (COAREO)


Ocean surface current U-comp Diff: CPL3-AWO - CPL2-AW-AO (COAREO)

(COARE0)

CIARÁN – effect of ocean/wave coupling on MFWAM

(COAREO)

	on SURFEX	on NEMO	on MFWAM			
Effect of (WA) coupling	momentum flux, heat fluxes	surface currents, SSH (even SST)	None			
Effect of (OA) coupling	heat fluxes (consistent SST in the coupled model)	None	None in Eunice case, some in Ciarán case			
Effect of WO-OW coupling	heat fluxes	surface currents (even SST)	SWH, periods, Stokes currents			

Comparative study of the different experiments

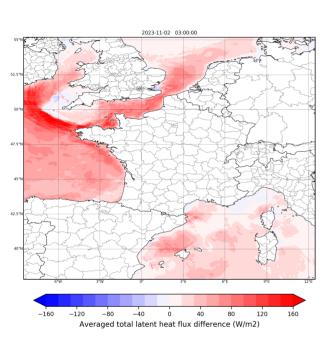
→ isolation of the effect of each coupling (even without feedback on atmosphere)

	on SURFEX	on NEMO	on MFWAM
Effect of (WA) coupling	momentum flux, heat fluxes	surface currents, SSH (even SST)	None
Effect of (OA) coupling	heat fluxes (consistent SST in the coupled model)	None	None in Eunice case, some in Ciarán case
Effect of WO-OW coupling	heat fluxes	surface currents (even SST)	SWH, periods, Stokes currents

Comparative study of the different experiments

→ isolation of the effect of each coupling (even without feedback on atmosphere)

A coupling between 2 components can have an effect on the 3rd one: the whole is greater than the sum of its parts



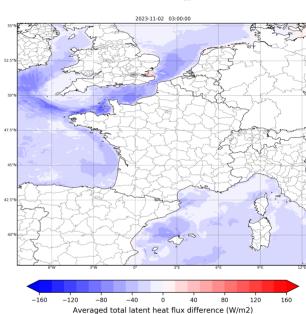
Turbulent fluxes parameterisation sensitivity

CIARÁN turbulent latent heat flux

CPL3-AWO

Diff: ECUME-Wave - COARE0

ECUME-Wave (Giordani et al., sub.) $\begin{array}{c}
\mathsf{MFWAM} \\
\mathbf{C}_{\mathsf{D}}
\end{array} - \begin{array}{c}
\mathsf{COARE0} \\
\frac{\alpha_{\mathsf{ch}}}{\mathsf{(Smith)}}
\end{array}$



Ref: CPL3-AWO

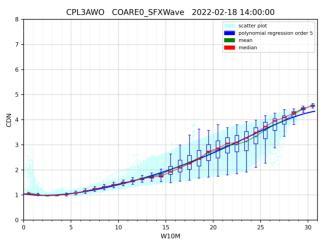
 α_{ch}

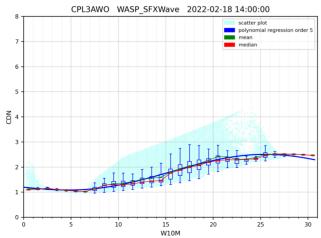
(Smith)

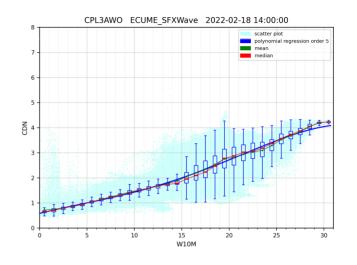
COAREO (Fairall et al., 2003)

CPL3-AWO **Diff: WASP - COARE0**

WASP
(Bouin et al., 2024)


Cch
function
of Tp'

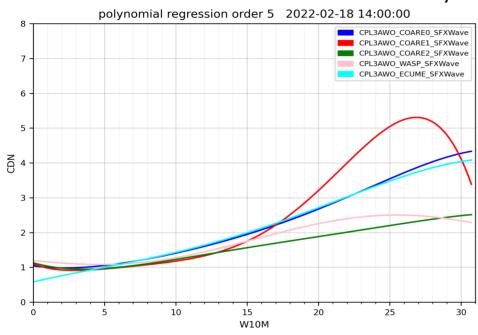

COARE0


— Ch
(Smith)

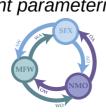
EUNICE, 22/02/18 at 14:00

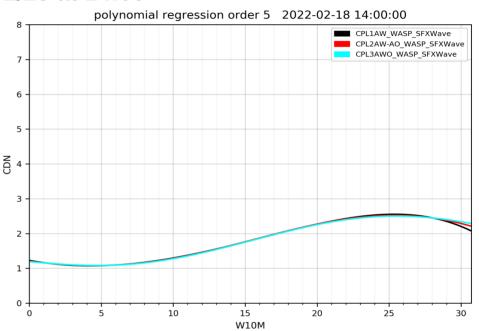
CPL3-AWO

- COARE0 (ref)
- ECUME
- WASP



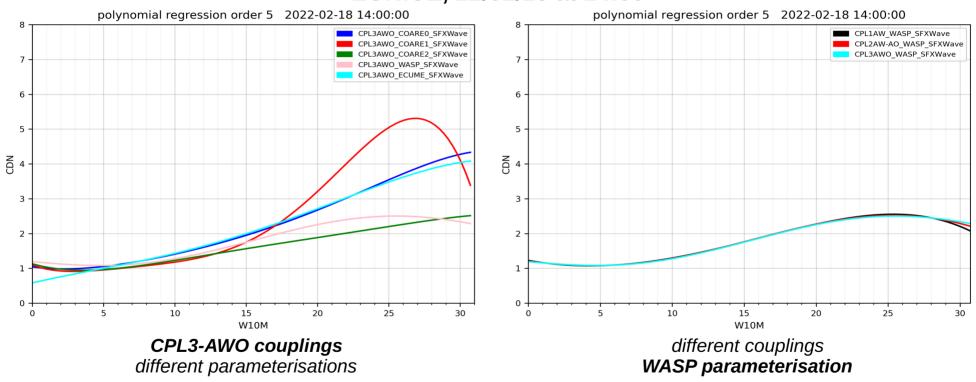
→ dispersion (non-linear and non-local relationship with wind)





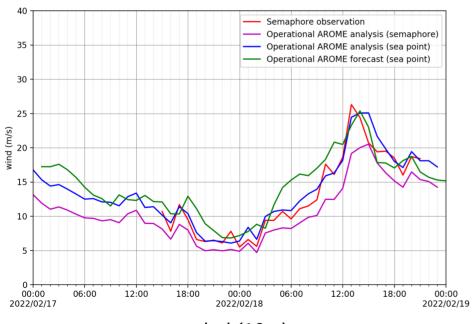
EUNICE, 22/02/18 at 14:00

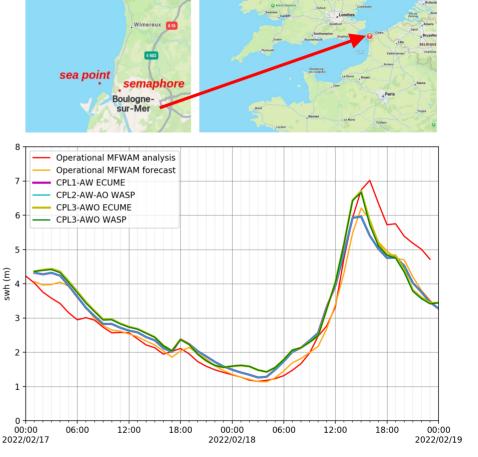
CPL3-AWO couplings different parameterisations


different couplings **WASP parameterisation**

WASP (Bouin et al., 2024) α_{ch} function of α_{p}

EUNICE, 22/02/18 at 14:00

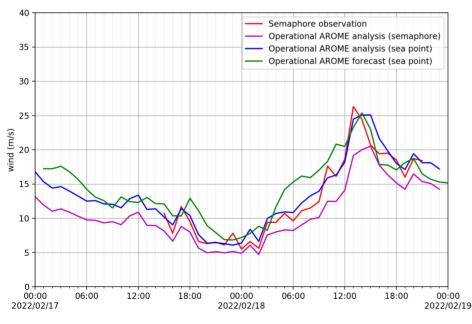

Parameterisation choice has more impact on transfer coefficients and turbulent fluxes than couplings choice

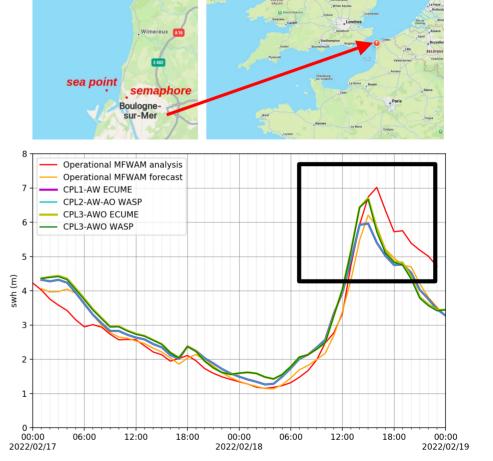


Eunice storm at Boulogne-sur-mer

Comparison of **10m-wind** and **SWH** between insitu **observations** (semaphore), **analysis** and operational **forecasts** (MFWAM 0.025° (Météo-France) and different **experiments** (CPL*)

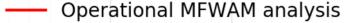
wind (10m)


SWH



Eunice storm at Boulogne-sur-mer

Comparison of **10m-wind** and **SWH** between insitu **observations** (semaphore), **analysis** and operational **forecasts** (MFWAM 0.025° (Météo-France) and different **experiments** (CPL*)



wind (10m)

SWH

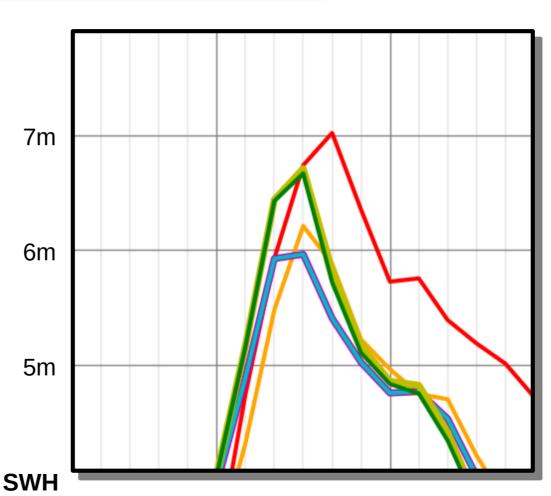
Operational MFWAM forecast

CPL1-AW ECUME-Wave

- CPL2-AW-AO WASP

— CPL3-AWO ECUME-Wave

— CPL3-AWO WASP



CPL1-AW

CPL2-AW-AO

CPL3-AWO

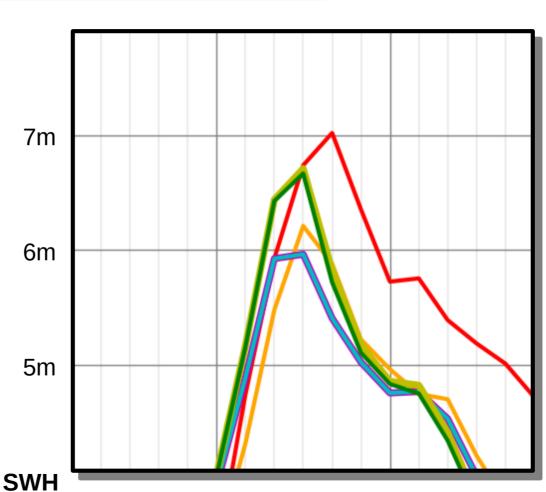
Operational MFWAM forecast

CPL1-AW ECUME-Wave

- CPL2-AW-AO WASP

CPL3-AWO ECUME-Wave

— CPL3-AWO WASP



CPL1-AW

CPL2-AW-AO

CPL3-AWO

Ocean-waves coupling has more impact on MFWAM than parameterisation choice

4. Conclusion

Conclusion

- Study coupled model integrating ocean-waves coupling
- New parameterisations (WASP, ECUME-Wave)
- Sensitivity studies

Conclusion

- Study coupled model integrating ocean-waves coupling
- New parameterisations (WASP, ECUME-Wave)
- Sensitivity studies

Key points

 The ocean-wave coupling has a noticeable effect on both ocean and waves models but also on surface turbulent fluxes

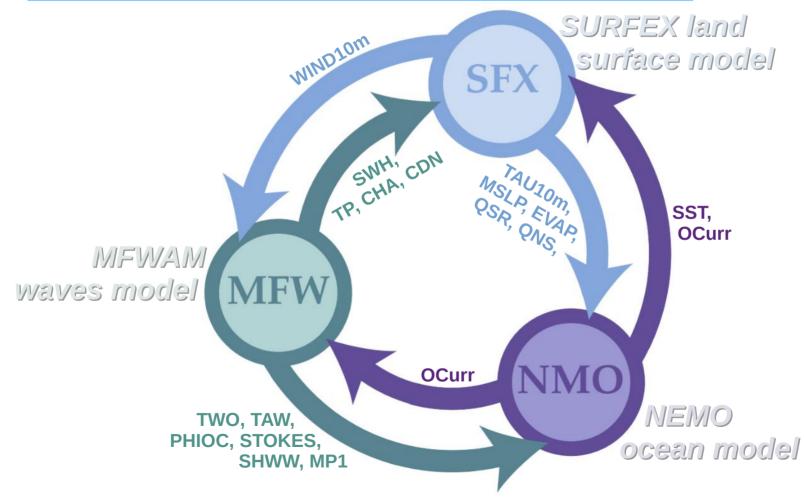
 Depending on the component and variables considered, parameterisation for surface turbulent fluxes choice may have a prevailing effect on couplings choice

Perspectives

With the study coupled model

- Comparison with available observation
- Select and study cases of false detection and missed event

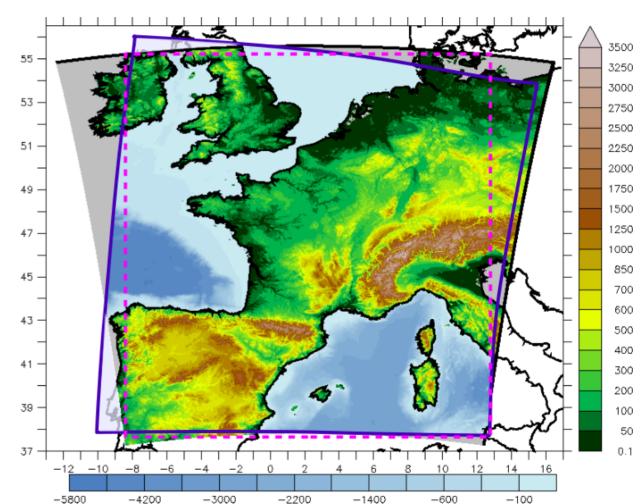
Next step towards integration into Météo-France forecasting system


- Feedback on the atmosphere
- Daily runs of the AROBASE system (simulation demonstrator)

Assembling the coupled model

Turbulent fluxes parameterisation sensitivity

		COARE 1 - COARE 0			COARE 2 - COARE 0			ECUME - COARE 0				WASP – COARE 0					
		Negative diff	Neg and pos diff	Positive diff	No diff or poor diff	Negative diff	Neg and pos diff	Positive diff	No diff or poor diff	Negative diff	Neg and pos diff	Positive diff	No diff or poor diff	Negative diff	Neg and pos diff	Positive diff	No diff or poor diff
CPL1 AO SFX- Nowave	SFX	Q2M T2M	-	-	CD CDN FM CE CH H LE EVAP	Q2M T2M	-	-	CD CDN FM CE CH H LE EVAP	Q2M T2M	н	CE CH LE EVAP	CD CDN FM	H LE EVAP	-	Q2M T2M	CD CDN FM CE CH
	NMO	-	-	-	X	-	-	-	X	-	-	-	X	-	-	-	Х
CPL2 AW-AO SFX- Wave	SFX	-	CD CDN H LE Q2M T2M	CE CH FM EVAP	-	CD CDN FM CE CH LE EVAP Q2M T2M	Н	-	-	Q2M T2M	CD CDN H	CE CH LE EVAP	FM	CE CH FM LE EVAP	CD CDN H Q2M T2M	-	-
	NMO	-	Х	-	SST	-	Х	-	SST	-	-	-	Х	-	Х	-	SST
CPL3 AWO SFX- Nowave	SFX	-	Q2M	CD CDN T2M	FM CE CH H LE EVAP	-	-	CD CDN Q2M T2M	FM CE CH H LE EVAP	Q2M T2M	н	CD CDN CE CH LE EVAP	FM	LE	-	CD CDN Q2M T2M	CE CH FM H EVAP
	NMO	-	-	-	Х	-	-	-	Х	-	-	-	Х	-	-	-	Х
CPL3 AWO SFX- Wave	SFX	-	CD CDN H LE Q2M T2M	FM CE CH EVAP	-	CD CDN FM CE CH LE EVAP Q2M T2M	н	-	-	Q2M T2M	CD CDN H	CE CH LE EVAP	FM	CD CDN FM CE CH LE EVAP	H Q2M T2M	-	-
	NMO	-	Х	-	SST	-	Х	-	SST	-	-	=	Х	-	Х	-	SST


Grids and variables exchanged

AROME-FR (conformal projection with zone E without SURFEX)

MFWAM-FR@1km (pseudo-regular long/lat grid, set in 1D and reduced)

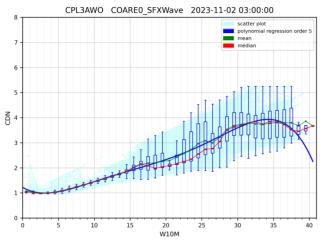
Sensitivity studies

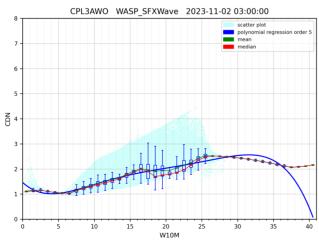
Impact drivers:

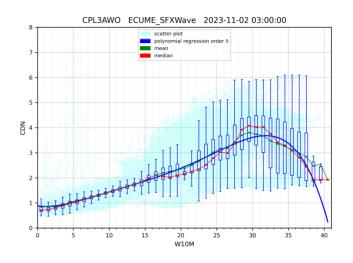
1. MFWAM configuration (integrated into coupled system vs. operational model)

- larger domain size
- better grid resolution (1km instead of 2.5km)
- better energy propagation at open boundaries

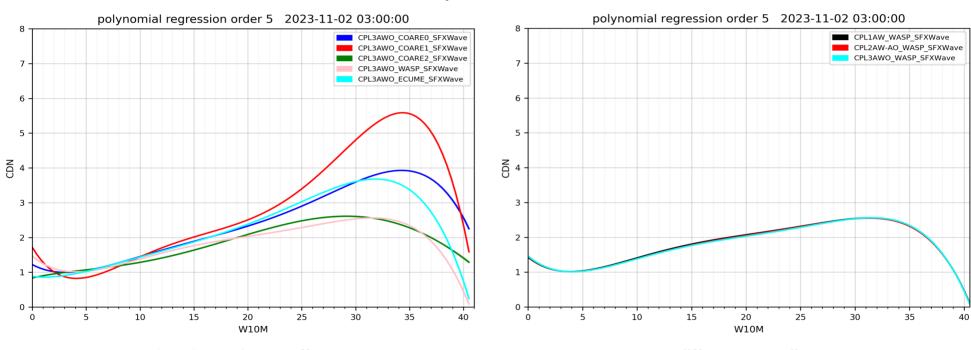
2. Couplings: what respective contributions?


- 3 forced models → 3-components coupled system


3. SURFEX turbulent fluxes parameterisation


- taking waves into account or not
- various options for calculating air-sea turbulent fluxes

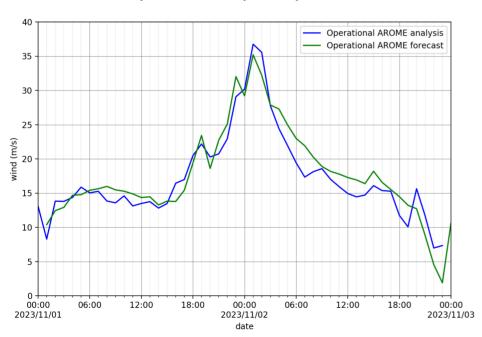
CIARÁN, 23/11/02 at 03:00

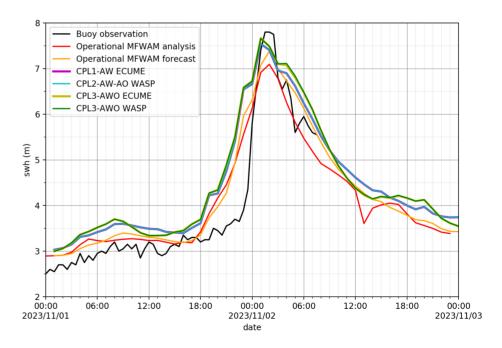

CPL3-AWO

- COARE0 (ref)
- ECUME
- WASP
- → dispersion (nonlinear and nonlocal relationship with wind)

CIARÁN, 23/11/02 at 03:00

CPL3-AWO couplings different parameterisations


different couplings **WASP parameterisation**



Ciarán storm at Pierres-Noires buoy

Comparison of 10m-wind and SWH between insitu observations (buoy), analysis and operational forecasts (MFWAM 0.025° (Météo-France) and different experiments (CPL*).

